Generalized Gauge Invariants for Certain Nonlinear Schrödinger Equations

نویسنده

  • Gerald A. GOLDIN
چکیده

In previous work, Doebner and I introduced a group of nonlinear gauge transformations for quantum mechanics, acting in a certain family of nonlinear Schrödinger equations. Here the idea for a further generalization is presented briefly. It makes possible the treatment of the logarithmic amplitude and the phase of the wave function on an equal footing, suggesting a more radical reinterpretation of these variables in linear and nonlinear quantum theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence transformations and differential invariants of a generalized nonlinear Schrödinger equation

By using the Lie’s invariance infinitesimal criterion we obtain the continuous equivalence transformations of a class of nonlinear Schrödinger equations with variable coefficients. Starting from the equivalence generators we construct the differential invariants of order one. We apply these latter ones to find the most general subclass of variable coefficient nonlinear Schrödinger equations whi...

متن کامل

Explode-Decay Solitons in the Generalized Inhomogeneous Higher-Order Nonlinear Schrödinger Equations

In this paper we investigate the generalized inhomogeneous higher-order nonlinear Schrödinger equations, generated recently by deforming the inhomogeneous Heisenberg ferromagnetic spin system through a space curve formalism [Phys. Lett. A 352, 64 (2006)] and construct their multisoliton solutions, using gauge transformation. The amplitude of the bright soliton solutions generated grows and deca...

متن کامل

New integrable systems of derivative nonlinear Schrödinger equations with multiple components

(Received 25 June 1998, revised version received 05 January 1999) The Lax pair for a derivative nonlinear Schrödinger equation proposed by Chen-Lee-Liu is generalized into matrix form. This gives new types of integrable coupled derivative nonlinear Schrödinger equations. By virtue of a gauge transformation, a new multi-component extension of a derivative nonlinear Schrödinger equation proposed ...

متن کامل

Long Range Scattering for Nonlinear Schrödinger Equations in One and Two Space Dimensions

We study the scattering theory for the nonlinear Schrödinger equations with cubic and quadratic nonlinearities in one and two space dimensions, respectively. For example, the nonlinearities are sum of gauge invariant term and non-gauge invariant terms such as λ0|u|2u + λ1u + λ2uū + λ3ū in one dimensional case, where λ0 ∈ R and λ1, λ2, λ3 ∈ C. The scattering theory for these equations belongs to...

متن کامل

Hamiltonian Gromov –

In this paper we introduce invariants of semi-free Hamiltonian actions of S 1 on compact symplectic manifolds (which satisfy some technical conditions related to positivity) using the space of solutions to certain gauge theoretical equations. These equations generalize at the same time the vortex equations and the holomor-phicity equation used in Gromov–Witten theory. In the definition of the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000